4,931 research outputs found

    DLC2 modulates angiogenic responses in vascular endothelial cells by regulating cell attachment and migration.

    Get PDF
    Deleted in liver cancer 1 (DLC1) is a RhoGTPase activation protein-containing tumor suppressor that associates with various types of cancer. Although DLC2 shares a similar domain structure with that of DLC1, the function of DLC2 is not well characterized. Here, we describe the expression and ablation of DLC2 in mice using a reporter-knockout approach. DLC2 is expressed in several tissues and in endothelial cells (ECs) of blood vessels. Although ECs and blood vessels show no histological abnormalities and mice appear overall healthy, DLC2-mutant mice display enhanced angiogenic responses induced by matrigel and by tumor cells. Silencing of DLC2 in human ECs has reduced cell attachment, increased migration, and tube formation. These changes are rescued by silencing of RhoA, suggesting that the process is RhoA pathway dependent. These results indicate that DLC2 is not required for mouse development and normal vessel formation, but may protect mouse from unwanted angiogenesis induced by, for example, tumor cells

    Optimal Receiver Antenna Location in Indoor Environment Using Dynamic Differential Evolution and Genetic Algorithm

    Get PDF
    [[abstract]]Using the impulse responses of these multipath channels, the bit error rate (BER) performance for binary pulse amplitude modulation impulse radio ultra-wideband communication system is calculated. The optimization location of receiving antenna is investigated by dynamic differential evolution (DDE) and genetic algorithm (GA) to minimize the outage probability. Numerical results show that the performance for reducing BER and outage probability by DDE algorithm is better than that by GA.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Channel Characteristics of MIMO-WLAN Communications at 60GHz for Various Corridors

    Get PDF
    [[abstract]]A comparison of 4 × 4 multiple-input multiple-output wireless local area network wireless communication characteristics for six different geometrical shapes is investigated. These six shapes include the straight shape corridor with rectangular cross section, the straight shape corridor with arched cross section, the curved shape corridor with rectangular cross section, the curved shape corridor with arched cross section, the L-shape corridor, and the T-shape corridor. The impulse responses of these corridors are computed by applying shooting and bouncing ray/image (SBR/Image) techniques along with inverse Fourier transform. By using the impulse response of these multipath channels, the mean excess delay, root mean square (RMS) delay spread for these six corridors can be obtained. Numerical results show that the capacity for the rectangular cross section corridors is smaller than those for the arched cross section corridors regardless of the shapes. And the RMS delay spreads for the T-and the L-shape corridors are greater than the other corridors.[[notice]]補正完畢[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙本[[booktype]]電子

    Baryonic Effects on Lagrangian Clustering and Angular Momentum Reconstruction

    Get PDF
    Recent studies illustrate the correlation between the angular momenta of cosmic structures and their Lagrangian properties. However, only baryons are observable and it is unclear whether they reliably trace the cosmic angular momenta. We study the Lagrangian mass distribution, spin correlation, and predictability of dark matter, gas, and stellar components of galaxy-halo systems using IllustrisTNG, and show that the primordial segregations between components are typically small. Their protoshapes are also similar in terms of the statistics of moment of inertia tensors. Under the common gravitational potential they are expected to exert the same tidal torque and the strong spin correlations are not destroyed by the nonlinear evolution and complicated baryonic effects, as confirmed by the high-resolution hydrodynamic simulations. We further show that their late-time angular momenta traced by total gas, stars, or the central galaxies, can be reliably reconstructed by the initial perturbations. These results suggest that baryonic angular momenta can potentially be used in reconstructing the parameters and models related to the initial perturbations.Peer reviewe

    Gout penyakit lama dihidapi manusia

    Get PDF
    This paper proposes a differential evolution with local information for TSK-type neuro-fuzzy system optimization. The differential evolution with local information consider neighborhood between each individual to keep the diversity of population. An adaptive parameter tuning based on 1/5th rule is used to trade off between local search and global search. For structure learning algorithm, the on-line clustering algorithm is used for rule generation. The structure learning algorithm generates a new rule which compares the firing strength. Initially, there is no rule in neuro-fuzzy system model. The rules are automatically generated by fuzzy measure. For parameter learning, the parameters are optimized by differential evolution algorithm. Finally, the proposed neuro-fuzzy system with novel differential evolution model is applied in chaotic sequence prediction problem. Results of this paper demonstrate the effectiveness of the proposed model. Š 2011 IEEE

    Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies

    Get PDF
    Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170–180 A/cm2 were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma

    A Study of Brain Networks Associated with Swallowing Using Graph-Theoretical Approaches

    Get PDF
    Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI) was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, 23.1¹1.52 years of age). To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia. Š 2013 Luan et al

    Solution Structure of Tensin2 SH2 Domain and Its Phosphotyrosine-Independent Interaction with DLC-1

    Get PDF
    Background: Src homology 2 (SH2) domain is a conserved module involved in various biological processes. Tensin family member was reported to be involved in tumor suppression by interacting with DLC-1 (deleted-in-liver-cancer-1) via its SH2 domain. We explore here the important questions that what the structure of tensin2 SH2 domain is, and how it binds to DLC-1, which might reveal a novel binding mode. Principal Findings: Tensin2 SH2 domain adopts a conserved SH2 fold that mainly consists of five b-strands flanked by two a-helices. Most SH2 domains recognize phosphorylated ligands specifically. However, tensin2 SH2 domain was identified to interact with nonphosphorylated ligand (DLC-1) as well as phosphorylated ligand. Conclusions: We determined the solution structure of tensin2 SH2 domain using NMR spectroscopy, and revealed the interactions between tensin2 SH2 domain and its ligands in a phosphotyrosine-independent manner

    Cten Is Targeted by Kras Signalling to Regulate Cell Motility in the Colon and Pancreas

    Get PDF
    CTEN/TNS4 is an oncogene in colorectal cancer (CRC) which enhances cell motility although the mechanism of Cten regulation is unknown. We found an association between high Cten expression and KRAS/BRAF mutation in a series of CRC cell lines (p = 0.03) and hypothesised that Kras may regulate Cten. To test this, Kras was knocked-down (using small interfering (si)RNA) in CRC cell lines SW620 and DLD1 (high Cten expressors and mutant for KRAS). In each cell line, Kras knockdown was mirrored by down-regulation of Cten Since Kras signals through Braf, we tested the effect of Kras knockdown in CRC cell line Colo205 (which shows high Cten expression and is mutant for BRAF but wild type for KRAS). Cten levels were unaffected by Kras knockdown whilst Braf knockdown resulted in reduced Cten expression suggesting that Kras signals via Braf to regulate Cten. Quantification of Cten mRNA and protein analysis following proteasome inhibition suggested that regulation was of Cten transcription. Kras knockdown inhibited cell motility. To test whether this could be mediated through Cten, SW620 cells were co-transfected with Kras specific siRNAs and a Cten expression vector. Restoring Cten expression was able to restore cell motility despite Kras knockdown (transwell migration and wounding assay, p<0.001 for both). Since KRAS is mutated in many cancers, we investigated whether this relationship could be demonstrated in other tumour models. The experiments were repeated in the pancreatic cancer cell lines Colo357 & PSN-1(both high Cten expressors and mutant for KRAS). In both cell lines, Kras was shown to regulate Cten and forced expression of Cten was able to rescue loss of cell motility following Kras knockdown in PSN-1 (transwell migration assay, p<0.001). We conclude that, in the colon and pancreas, Cten is a downstream target of Kras and may be a mechanism through which Kras regulates of cell motility

    Comparison of TCP and TCP/HA Hybrid Scaffolds for Osteoconductive Activity

    Get PDF
    Two types of porous ceramic scaffolds were prepared, consisting of β-tricalcium phosphate (TCP) or the mixed powder of TCP and hydroxyapatite (HA) at a 2:1 mass ratio. A variety of methods have been used to fabricate bone scaffolds, while the sintering approach was adopted in this work. An extremely high temperature was used on sintering that proposed to consolidate the ceramic particles. As revealed by SEM, a well opened pore structure was developed within the scaffolds. The θ-values were measured to be of 73.3° and 6.5° for the composite scaffold and TCP sample, respectively. According to XRD patterns, the existence of grains coalescence and partial bonding between HA and TCP powders was demonstrated. Scaffold mechanical property in the term of flexural strength was also determined. The result showed decreasing of the strength by HA supplement, suggesting the more brittle characteristic of HA in comparison with TCP. By soaking the composite scaffold in PBS for a period of 2 weeks, transformation from particles to flank-like crystalline was clearly observed. Such change was found to be favorable for cell attachment, migration, and growth. By implanting cell-seeded scaffolds into nude mice, an abundant osseous extracellular matrix was identified for the composite implants. In contrast, the matrix was minimally detected in TCP implanted samples. Thus, the composite scaffold was found superior for hard tissue regeneration
    • …
    corecore